

Fast Attention Mechanisms: a Tale of Parallelism

Jingwen Liu Hantao Yu Clayton Sanford Alexandre Andoni Daniel Hsu

Motivation

Standard attention mechanism

- Slow, takes quadratic time in sequence length
- Expressive
 - Can simulate MPC protocol (MapReduce)
 - Solves multi-step reasoning problems with optimal depth

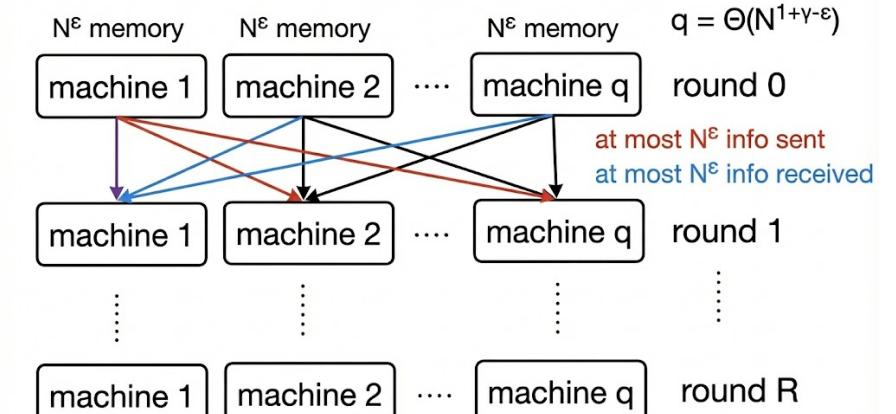
Sub-quadratic variants of attention

- Fast, near-linear time in sequence length
- Parameter-inefficient for algorithmic reasoning tasks
 - RNN, LSTM, Mamba
 - Performer, Poly-Sketchformer, Longformer, etc

Is there any efficient attention mechanism that maintains the key representational advantages of standard attention over non-parallel mechanisms?

Massively Parallel Computation (MPC)

- A model for processing big datasets with parallel and distributed computation on clusters.
- An R -round (γ, ϵ) -MPC protocol on input N words specifies the computation represented by $q = N^{1+\gamma-\epsilon}$ machines, each with local memory $s = N^\epsilon$ words.



k -Hop Induction Heads

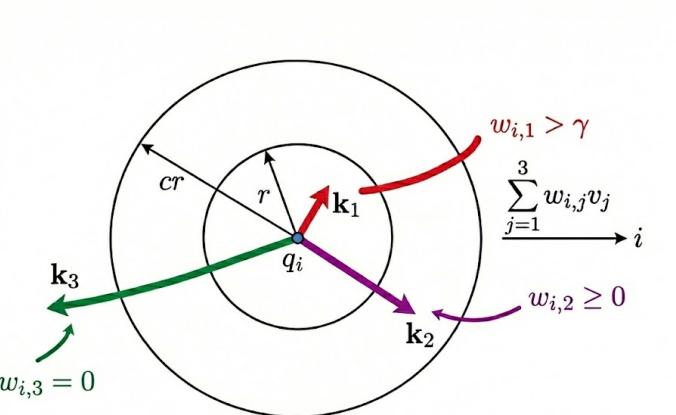
- Induction heads are identified as a mechanism for model's capability for in-context learning
- Related problem: multi-step reasoning
 - John is in the playground. Helen is playing with John. Helen picked up a football. Where is the football?
- 1-hop induction heads: find the last occurrence, output the next token
- k -hop induction heads:
 - repeat the procedure k times

Main Results

Approximate Nearest Neighbor Attention (ANNA)

- Standard attention can be seen as exact nearest neighbor search
- Approximate nearest neighbor search
 - Find neighbors within cr distance with the query (r is the NN distance)
 - Near-linear time $O(N^{1+1/c^2})$ when c is large
- Given the embedded $Q, K, V \in \mathbb{R}^{N \times m}$, for each query only compute attention with Approximate NNs

$$\begin{aligned} \text{ANNA}_{Q,K,V}(X)_i &= \sum_j w_{i,j} v_j \\ \sum_j w_{i,j} &= 1 \\ w_{i,j} > 0 &\rightarrow \|k_j - q_i\| \leq cr \\ \|k_j - q_i\| \leq r &\rightarrow w_{i,j} \geq \tau, \tau > 0 \end{aligned}$$



ANNA-transformer is equivalent to MPC

- Theorem (ANNA-transformer simulates MPC): Any R -round (γ, ϵ) -MPC protocol can be simulated by an ANNA-transformer with depth $O(R)$ and width (number of heads \times m) $O(N^{\epsilon+\delta})$, for any fixed $\delta > 0$.
 - Sub-quadratic time simulation
 - Ties ANNA-transformer in the existing MPC hierarchy
 - $O(1)$ -layer ANNA-transformer can solve 3-SUM with width $O(N^{1/2+\delta})$
- Theorem (MPC simulates ANNA-transformer): Any L -layer ANNA-transformer with width $O(N^\epsilon)$ can be simulated by a $O(L)$ -round MPC protocol with local memory $s = O(N^{\epsilon+\delta})$ and $q = O(N^{1+\delta+3/c^2})$ machines.
 - Sub-quadratic number of machines
 - Round complexity lower bound for MPC \rightarrow depth lower bound

Comparison with other efficient mechanisms

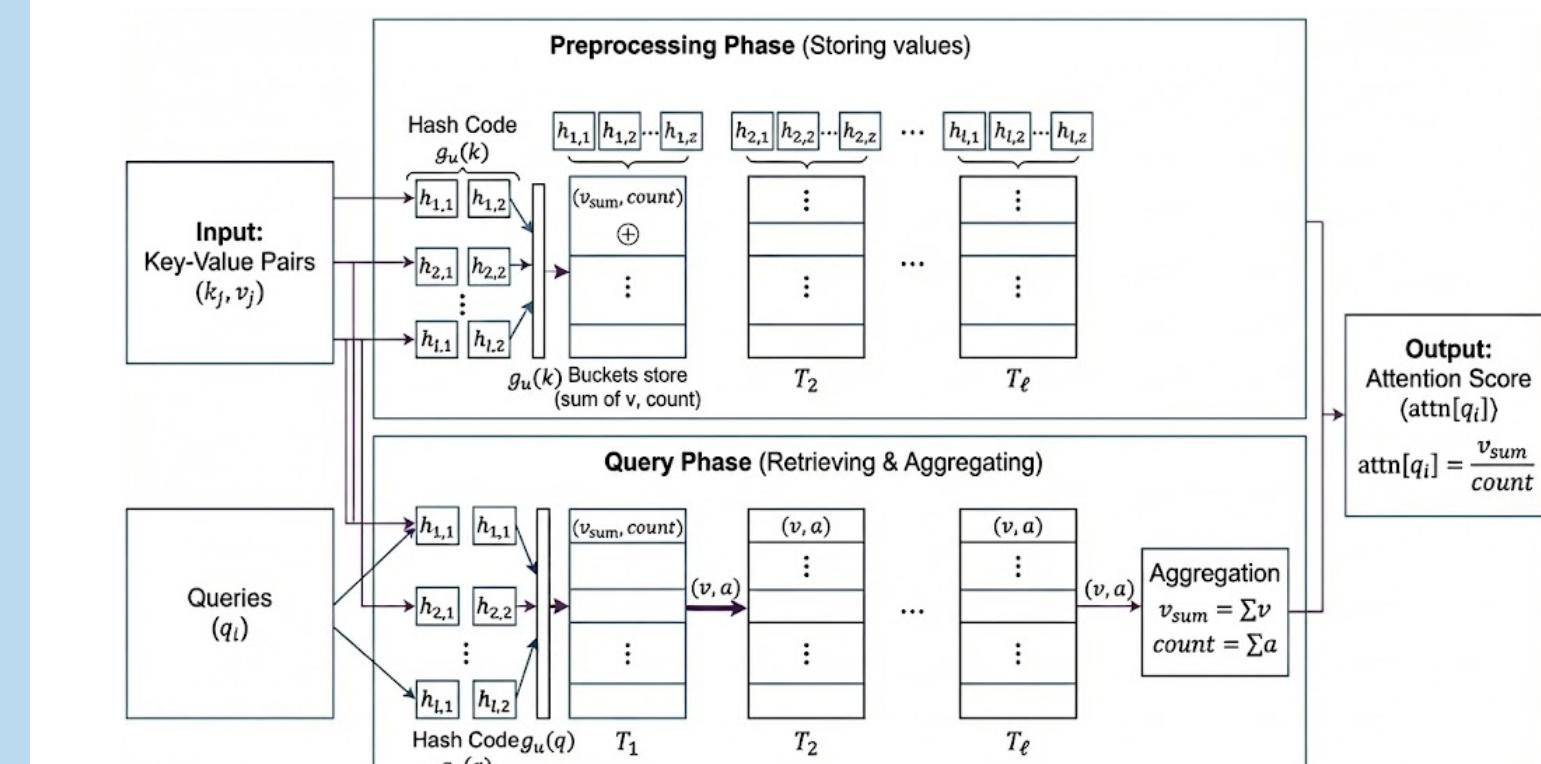
- Theorem (ANNA-simulates low-rank/kernel-based attention): Any low-rank attention-based transformer with L layers, rank \times width $O(N^\epsilon)$ can be simulated by an ANNA-transformer with depth $O(L)$ and width $O(N^{\epsilon+\delta})$.

Near-optimal multi-step reasoning

- Theorem: Depth $O(\log k)$ ANNA-transformers with width $O(N^\epsilon)$ can solve k -hop.
 - RNN, LSTM, State-Space model requires either depth k or linear width [1]
 - Low-rank/kernel-based and masking-based sub-quadratic attention require either depth k or near-quadratic computation [1]

Algorithm

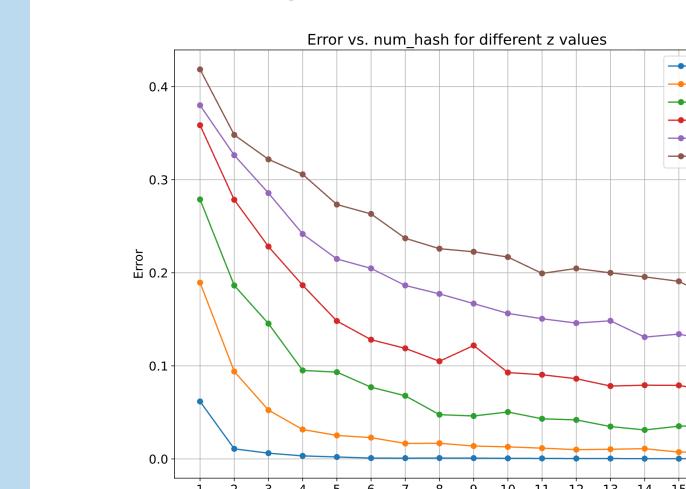
- Theorem: Fix $c > \sqrt{3}$. An LSH-based algorithm can compute ANNA with high probability, using time $\tilde{O}(mN^{1+3/c^2})$ and space $\tilde{O}(mN)$.
- Locality sensitive hashing (LSH): A family of hash functions that maps nearby points into the same hash buckets
 - $\|x - y\| \leq r \rightarrow \Pr[h(x) = h(y)] \geq p_1$
 - $\|x - y\| > cr \rightarrow \Pr[h(x) = h(y)] \leq p_2$



Experiments

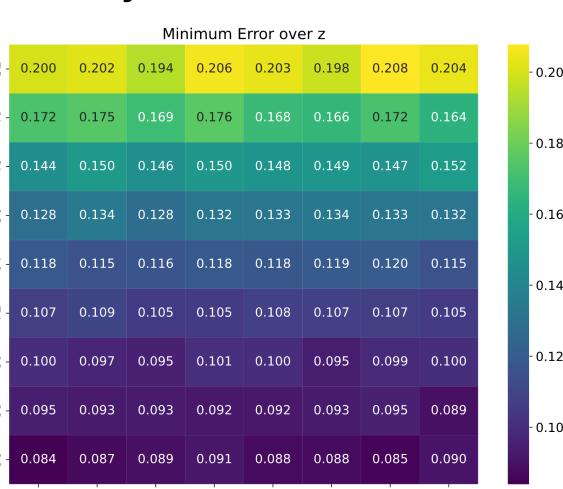
Match2

- Sequence length $N = 32$
- 1-layer ANNA-transformer



Induction heads (1-hop)

- Sequence length $N = 100$
- 2-layer ANNA-transformer



[1] Clayton Sanford, Daniel Hsu and Matus Telgarsky. Transformers, parallel computation, and logarithmic depth. ICML 2024.