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Motivation

Standard attention mechanism
e Slow, takes quadratic time in sequence length
e Expressive
e Can simulate MPC protocol (MapReduce)
e Solves multi-step reasoning problems with optimal depth
Sub-quadratic variants of attention
e Fast, near-linear time in sequence length
e Parameter-inefficient for algorithmic reasoning tasks
e RNN, LSTM, Mamba
e Performer, Poly-Sketchformer, Longformer, etc

Is there any efficient attention mechanism that maintains the key representational
advantages of standard attention over non-parallel mechanisms?

Massively Parallel Computation (MPQC)

e A model for processing big datasets with parallel and distributed computation on
clusters.

e An R-round (y, €)-MPC protocol on input N words specifies the computation
represented by g = N I+y—e machines, each with local memory s = N¢ words.
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k-Hop Induction Heads

e Induction heads are the identified as a mechanism for model’s capability for in-
context learning
e Related problem: multi-step reasoning
° is in the playground. Helen is playing with
football. Where is the football?

e |-hop induction heads: find the last occurrence, output the next token
e k-hop induction heads:
repeat the procedure k times

. Helen picked up a
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Main Results

Approximate Nearest Neighbor Attention (ANNA)
e Standard attention can be seen as exact nearest neighbor search
e Approximate nearest neighbor search

e Find neighbors within cr distance with the query (7 is the NN distance)
2
e Near-linear time O(N'*¢") when c is large

e Given the embedded O, K,V € RN XM for each query only compute attention with
Approximate NNs
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ANNA-transformer is equivalent to MPC
e Theorem (ANNA-transformer simulates MPC): Any R-round (7, €)-MPC protocol can by
simulated by an ANNA-transformer with depth O(R) and width (number of heads X m)

O(N%+0), for any fixed & > 0.

e Sub-quadratic time simulation
e Ties ANNA-transformer in the existing MPC hierarchy

e O(1)-layer ANNA-transformer can solve 3-SUM with width O(N/>+9)
e Theorem (MPC simulates ANNA-transformer): Any L-layer ANNA-transformer with width O(/N®)
can be simulated by a O(L)-round MPC protocol with local memory s = O(N¢*°) and

qg = O(N'*+5+3¢*) machines.
e Sub-quadratic number of machines

e Round complexity lower bound for MPC — depth lower bound

Comparison with other efficient mechanisms
e Theorem (ANNA-simulates low-rank/kernel-based attention): Any low-rank attention-based

transformer with L layers, rank X width O(N?) can be simulated by an ANNA-transformer with
depth O(L) and width O(N¢1).

Near-optimal multi-step reasoning
e Theorem: Depth O(log k) ANNA-transformers with width O(N®) can solve k-hop.

e RNN, LSTM, State-Space model requires either depth & or linear width [1]
e Low-rank/kernel-based and masking-based sub-quadratic attention require either

depth k or near-quadratic computation [1]

Algorithm

e Theorem: Fix ¢ > \/5 An LSH-based algorithm can compute ANNA with high

probability, using time 5(mN1+3/62) and space O(mN).
e | ocality sensitive hashing (LSH): A family of hash functions that maps nearby
points into the same hash buckets

o |[x—yl £r— Prlha(x) =h(y)] > p,
o |[x =yl >cr— Prla(x) = h(y)] < p,
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Match2 Induction heads (1-hop)

e Sequence length N = 32
e 1-layer ANNA-transformer

e Sequence length N = 100
e 2-layer ANNA-transformer

Error vs. num_hash for different z values Minimum Error over z
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