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Problem Setup

Cast of characters. Consider a context space X and an action space Y = {—1,1}...

« “Benchmark” hypothesis class % C {—1,1}* comprised of functions h: X — {—1,1}.

= Collection of groups G C 2% comprised of functions g : X — {0, 1} denoting membership
for some subset of X.

= Arbitrary bounded loss function £: )Y x Y — [0, 1].

NOTE: In this poster, we focus on binary actions, but this generalizes to discrete action spaces.

Online learning game. Forroundst=1,2,3,...,7T :

1. Nature chooses (x¢,4¢) € X x Y and reveals xy.
7. Learner chooses an action 4; € V.

5. Nature reveals y; € V.

/. Learner incurs loss £(g+, y¢) € [0, 1].

Motivation. Traditional online learning is concerned with aggregate o(T') regret over the T rounds.
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“Individual-level” regret guarantees are too strong to be feasible:

Regp(H) == 0(f, yr) — hlél,f;{

Regr(H, {z}) == > 1{zr = a} (G, ye) — inf > 1{xy =z} L(hlwr), u2).

Online multi-group learning

A middle-ground between on-average and individual-level guarantees: consider a rich (possibly
exponetnially large/infinite) collection of subsets of the input space, G C X, and consider:

Zg xt)(Gt, yt —hlgizg xt)! Yt)-

Goal. Ensure that Regp(H, g) = o( ) T') for all groups g € G simultaneously.
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Why is this interesting? The best hypothesis for different groups may differ. The groups may
intersect in arbitrary ways, precluding running a separate no-regret algorithm on each g € G.

https.//arxiv.org/abs/2406.05287

Infinite or Large Collections of Groups

Existing results for online multi-group learning assume finiteness/enumerability of either H or G:

= Blum & Lykouris (2020): Regp(H, g) = o(T) for all g € G for finite H and G.
= Acharya et al. (2023): Regp(H, g) = o(T) for all g € G with finite G and oracle for (infinite) H.

Our main question. Can we ensure Regp(H, g) = o(T) for all g € G that is oracle-efficient in both
H and G? Can we deal with cases in which G Is too large to possibly enumerate?

Assumptions

Assumption O: Access to oracle. For a > 0 and a sequence of m loss functions ¢; : ({0,1} X
{—1,1}) x {—1,1} x {—=1,1}) — [-1,1] and weights w1, ..., wy, € R, an a-approximate (G, H)-
optimization oracle OPT?Q ) outputs a pair (g, h) € G x H satisfying:

sz (9(i), hix;)), (y@,y{)) - SUup sz 372 h*(%» (ywy;)) o

(g h* cOGXH i=1

Assumption 1: Smoothed adversary. Let B be a base measure on X. A o-smooth distribution p
on X is absolutely continuous with respect to B and satisfies

d s < 1
eSS sude s
At each round t € [T, Nature fixes a o-smooth distribution u; and samples x; ~ g, still choosing
yr € Y adversarially.

Assumption 2: Existence of good perturbation matrix. Let v > 0. For finite G and H, there exists
a matrix I' € [—1, 1I91HIXN 'such that:

1. ~v-approximable. For all (g,h) € G x H and (z,y/,y) € X x Y x Y, there exists s € RY with
|s||1 <~ such that

(LM TR ) > 00((g, ), (v, 9) — Eol(g', 1)), (4, )) Forall (¢, h)) € G x H.

. ~y-implementable. For each column j € [N], there exists a dataset S; with |S;| < M such
that, for all pairs of rows (g, h), (¢’, 1)) € G x H,

pllond) — plaha) = N~ (L((g,h), (0 9) — Lellg ), (s )
(w,(z,y,y')) €S

Main Theorems

Theorem (Smoothed Setting). Under Assumption 1 and H and G with VC dimension d < oo,
with M = poly(T'),n = poly(T'/o), and n = poly(T' /o), Algorithm 1 achieves, for each g € G:

ERegr(H, g)] <O (\/dT og 1 + ozT) .

o

Theorem (Existence of approximable and implementable perturbations). Under a T' €
—1, 1)I9IHIXN Wwith ~ > 0 in Assumption 2 and finite % and G, there exists an algorithm that
achieves, for each g € G:

E[Reaz(H, )] < O (/Tymax {5, 1oz []1G], v/Nlog [H[[G] b + aT)
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Algorithm (for the smoothed setting)

Main idea. For any x € X, the single-round regret of the Learner on group ¢ to the hypothesis h is
Ce((g,h), (' w) = g(x) (L', y) — U(h(x),y)) .

The algorithm is a sequential game between two competing players:

* (G, H)-player. Employs (G, H)-optimization oracle and follow-the-perturbed-leader (FTPL)
style algorithm to play a distribution over G x ‘H that maximizes single-round regret of the
H-player. Maintains an implicit distribution on G x H through FTPL.

= ‘H-player. Receives (an approximation of a) distribution over G x H from (G, H)-player and
solves an LP to choose gy randomly.

The perturbations for the (G, H)-player in Algorithm 1 are:

th(g7h77) :Z \/ﬁ Y

where z; ; ~ B and vy ; ~ N(0,1)
j=1

Algorithm 1 Algorithm for Group-wise Oracle Efficiency (for smoothed online learning)

Input: Perturbation strength n > 0; perturbation count n € N; number of oracle calls M € N.
1: fort=1,2,3,...,T do
g Receive a context z; ~ u; from Nature.
3: fori=1,2,3,...,M do
4: (G, ’H)-player Draw . hallucinated examples as in Equatlon (4) to construct ?rbm
5

(G, H)-player: Using the entire history {(gs,ys)}s=; so far, call OPT{; 5, to obtain
(37, 57) € G x H satisfying:

t—l

U0, (37,1, (@5, ys)) + 722 (@G, Y, )

M

et

5=

. Zfi’ms (9% %), (s, ¥2)) + mom(g®, B* ) — @ (5)
6: end for
7:  H-player: Call OPTy twice on the singleton datasets {(z¢, 1)} and {(z;, —1)}, with the 0-1
loss, obtaining:
hy € argminl {h*(z;) # 1}, h’; € argminl {h*(z;) # —1}.
h*€H h*€H

8:  H-player: Solve the linear program

min )\
p,AER

M
subj. to Y ply, (3, hyY), (Wi (ze),¥)) + (1 = p)a, ((3:7, Be?), (W1 (z4),9)) < A
=1
Vy € {—1,1}
D-p=1

9:  Sample b ~ Ber(p) where b € {—1,1}, let hy = h;.
10:  Learner commits to the action ¢; = h;(x;); Nature reveals y;.
11:  Learner incurs the loss £(g, y ).
12: end for
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