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Problem Setup

Cast of characters. Consider a context space X and an action space Y = {−1, 1}...

“Benchmark” hypothesis class H ⊆ {−1, 1}X comprised of functions h : X → {−1, 1}.

Collection of groups G ⊆ 2X comprised of functions g : X → {0, 1} denoting membership

for some subset of X .

Arbitrary bounded loss function ` : Y × Y → [0, 1].

NOTE: In this poster, we focus on binary actions, but this generalizes to discrete action spaces.

Online learning game. For rounds t = 1, 2, 3, . . . , T :

1. Nature chooses (xt, yt) ∈ X × Y and reveals xt.

2. Learner chooses an action ŷt ∈ Y .

3. Nature reveals yt ∈ Y .

4. Learner incurs loss `(ŷt, yt) ∈ [0, 1].

Motivation. Traditional online learning is concerned with aggregate o(T ) regret over the T rounds.

RegT (H) :=
T∑

t=1
`(ŷt, yt) − inf

h∈H

T∑
t=1

`(h(xt), yt).

“Individual-level” regret guarantees are too strong to be feasible:

RegT (H, {x}) :=
T∑

t=1
1 {xt = x} `(ŷt, yt) − inf

h∈H

T∑
t=1

1 {xt = x} `(h(xt), yt).

Online multi-group learning

Amiddle-ground between on-average and individual-level guarantees: consider a rich (possibly

exponetnially large/infinite) collection of subsets of the input space, G ⊆ X , and consider:

RegT (H, g) :=
T∑

t=1
g(xt)`(ŷt, yt) − inf

h∈H

T∑
t=1

g(xt)`(h(xt), yt).

Goal. Ensure that RegT (H, g) = o(T ) for all groups g ∈ G simultaneously.

Why is this interesting? The best hypothesis for different groups may differ. The groups may

intersect in arbitrary ways, precluding running a separate no-regret algorithm on each g ∈ G.

Infinite or Large Collections of Groups

Existing results for online multi-group learning assume finiteness/enumerability of either H or G:

Blum & Lykouris (2020): RegT (H, g) = o(T ) for all g ∈ G for finite H and G.
Acharya et al. (2023): RegT (H, g) = o(T ) for all g ∈ G with finite G and oracle for (infinite) H.

Our main question. Can we ensure RegT (H, g) = o(T ) for all g ∈ G that is oracle-efficient in both

H and G? Can we deal with cases in which G is too large to possibly enumerate?

Assumptions

Assumption 0: Access to oracle. For α ≥ 0 and a sequence of m loss functions `i : ({0, 1} ×
{−1, 1}) × ({−1, 1} × {−1, 1}) → [−1, 1] and weights w1, . . . , wm ∈ R, an α-approximate (G, H)-
optimization oracle OPTα

(G,H) outputs a pair (g̃, h̃) ∈ G × H satisfying:

m∑
i=1

wi`i((g̃(xi), h̃(xi)), (yi, y′
i)) ≥ sup

(g∗,h∗)∈G×H

m∑
i=1

wi`i((g∗(xi), h∗(xi)), (yi, y′
i)) − α.

Assumption 1: Smoothed adversary. Let B be a base measure on X . A σ-smooth distribution µ
on X is absolutely continuous with respect to B and satisfies

ess supdµ

dB
≤ 1

σ
.

At each round t ∈ [T ], Nature fixes a σ-smooth distribution µt and samples xt ∼ µt, still choosing

yt ∈ Y adversarially.

Assumption 2: Existence of good perturbation matrix. Let γ > 0. For finite G and H, there exists

a matrix Γ ∈ [−1, 1]|G||H|×N , such that:

1. γ-approximable. For all (g, h) ∈ G × H and (x, y′, y) ∈ X × Y × Y , there exists s ∈ RN with

‖s‖1 ≤ γ such that

〈Γ(g,h) − Γ(g′,h′), s〉 ≥ ˜̀x((g, h), (y′, y)) − ˜̀x((g′, h′), (y′, y)) for all (g′, h′) ∈ G × H.

2. γ-implementable. For each column j ∈ [N ], there exists a dataset Sj with |Sj| ≤ M such

that, for all pairs of rows (g, h), (g′, h′) ∈ G × H,

Γ((g,h),j) − Γ((g′,h′),j) =
∑

(w,(x,y,y′))∈Sj

w
( ˜̀x((g, h), (y′, y)) − ˜̀x((g′, h′), (y′, y))

)

Main Theorems

Theorem (Smoothed Setting). Under Assumption 1 and H and G with VC dimension d < ∞,

with M = poly(T ), n = poly(T/σ), and η = poly(T/σ), Algorithm 1 achieves, for each g ∈ G:

E[RegT (H, g)] ≤ O

(√
dT log T

σ
+ αT

)
.

Theorem (Existence of approximable and implementable perturbations). Under a Γ ∈
[−1, 1]|G||H|×N with γ > 0 in Assumption 2 and finite H and G, there exists an algorithm that

achieves, for each g ∈ G:

E[RegT (H, g)] ≤ O
(√

Tg max
{

γ, log |H||G|,
√

N log |H||G|
}

+ αT
)

Algorithm (for the smoothed setting)

Main idea. For any x ∈ X , the single-round regret of the Learner on group g to the hypothesis h is

˜̀x((g, h), (y′, y)) := g(x)
(
`(y′, y) − `(h(x), y)

)
.

The algorithm is a sequential game between two competing players:

(G, H)-player. Employs (G, H)-optimization oracle and follow-the-perturbed-leader (FTPL)

style algorithm to play a distribution over G × H that maximizes single-round regret of the

H-player. Maintains an implicit distribution on G × H through FTPL.

H-player. Receives (an approximation of a) distribution over G × H from (G, H)-player and
solves an LP to choose ŷt randomly.

The perturbations for the (G, H)-player in Algorithm 1 are:

πbin
t,n (g, h, η) :=

n∑
j=1

ηγt,jg(zt,j)h(zt,j)√
n

, where zt,j ∼ B and γt,j ∼ N(0, 1)
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